Cyclin D1 Expression in Odontogenic Cysts

Odontojenik Kistlerde Siklin D1 Ekspresyonu

Nasim TAGHAVI1, Shirin MODABBERNIA1, Alireza AKBARZADEH2, Samad SAJJADI3

Department of 1Oral and Maxillofacial Pathology, 2Biostatistics, 3Paramedical Sciences, Shahid Beheshti University of Medical Science, TEHRAN, IRAN

ABSTRACT

Objective: In the present study expression of cyclin D1 in the epithelial lining of odontogenic keratocyst, radicular cyst, dentigerous cyst and glandular odontogenic cyst was investigated to compare proliferative activity in these lesions.

Material and Method: Immunohistochemical staining of cyclin D1 on formalin-fixed, paraffin-embedded tissue sections of odontogenic keratocysts (n=23), dentigerous cysts (n=20), radicular cysts (n=20) and glandular odontogenic cysts (n=5) was performed by standard EnVision method. Then, slides were studied to evaluate the following parameters in epithelial lining of cysts: expression, expression pattern, staining intensity and localization of expression.

Results: The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p<0.001). Assessment of staining intensity and staining pattern showed more strong intensity and focally pattern in odontogenic keratocysts, but difference was not statistically significant among groups respectively (p=0.204, 0.469). Considering expression localization, cyclin D1 positive cells in odontogenic keratocysts and dentigerous cysts were frequently confined in parabasal layer, different from radicular cysts and glandular odontogenic cysts. The difference was statistically significant (p<0.01).

Conclusion: Findings showed higher expression of cyclin D1 in parabasal layer of odontogenic keratocyst and the entire cystic epithelium of glandular odontogenic cysts comparing to dentigerous cysts and glandular odontogenic cyst. This difference was statistically significant (p<0.01).

Key Words: Cyclin D1, Odontogenic cysts, Immunohistochemistry

INTRODUCTION

Odontogenic cysts are subclassified as developmental or inflammatory in origin with variable clinical and biological behaviors. Radicular cyst (RC) is an inflammatory odontogenic cyst which derived from the epithelial rest of malassez, whereas dentigerous cyst (DC), odontogenic keratocyst (OKC) and glandular odontogenic cyst (GOC) are developmental in origin. Amongst these, odontogenic keratocyst and glandular odontogenic cyst show aggressive behavior specially OKC. OKC recently classified by World Health Organization as keratocystic odontogenic tumor, comprises 3% to 11% of odontogenic cysts which arises from dental lamina, although origin of this cyst from extension of basal cells of the overlying epithelium has also been suggested (1).

Correspondence: Nasim TAGHAVI
Department of Oral and Maxillofacial Pathology, Shahid Beheshti University of Medical Science, TEHRAN, IRAN
E-mail: nasim.taghavi@yahoo.com Phone: +98 912 181 53 87

(Received : 03.10.2012 Accepted : 16.03.2013)
It is known that OKC shows aggressive behavior with higher rates of recurrence than other types of odontogenic cysts, as well as a tendency to invade adjacent tissues (2). Numerous studies intended to identify the precise nature and special characteristics of OKC. According to these data the characteristics of OKC may be related to proliferative activity in epithelial lining or enzymatic activity in fibrous wall (1).

Some of these findings could support the theory that OKCs are neoplastic in origin, but other results clearly indicate that these lesions are developmental odontogenic cysts with some neoplastic properties due to high intrinsic growth potential (3,4). Some authors reported an abnormal expression of tumor suppressor genes and oncogenes in OKC such as PTCH gene (2).

Transition between different stages of cell cycle is regulated at check points. Several check points are regulated by cyclin dependent kinases (CDKs) and their activating partners, the cyclins. Cyclin D1 gene (CCDN1) is located on chromosome 11q13, encodes a critical cell cycle regulatory protein (Cyclin D1) that drives the cell cycle from G1 to S phase (5). Amplification and over expression of CCND1 has been reported in various carcinoma (6,7,8,9,10,11,12), so the study of cyclin D1 expression may improve our knowledge about the biological substrate of OKC and GOC behavior.

Based on this hypothesis, in the present study, expression of cyclin D1 in the epithelial lining of odontogenic keratocyst and three other odontogenic cysts including radicular cyst, dentigerous cyst and glandular odontogenic cyst in order to evaluate and compare proliferative activity in these cystic lesions in different layers of epithelium was undertaken.

MATERIALS and METHODS

Sample collection
After reviewing clinical information and histologic findings, a total of 68 odontogenic cysts consisting parakeratinized OKCs (n=23), DCs (n=20), RCs (n=20) and GOCs (n=5) were collected from paraffin-embedded blocks of Oral and Maxillofacial Pathology Department, Beheshti University of Medical Sciences, Tehran, Iran.

Since many studies showed that proliferative activity in OKCs associated with Gorlin syndrome (syndromic OKC) is higher than sporadic OKCs, they were excluded from the study. Inflammatory cysts except for radicular cysts because of probable effect of inflammation on proliferative activity were not included the samples either.

Immunohistochemistry
Expression of cyclin D1 was determined immunohistochemically using a standard EnVision method. In brief, all of the samples were fixed in 10% formalin, and embedded in paraffin. Histologic sections were cut at 4m and mounted on poly-L-lysine coated slides. Following dewaxing and rehydration, antigen retrieval was performed by heating in microwave oven for 20 minutes in a freshly prepared, citrate buffer solution at PH=6. After cooling to room temperature and rinsing in phosphate buffer saline (PBS), incubation with 0.3% hydrogen peroxide for 20 minutes was done to block the endogenous peroxidase activity. Cyclin D1 staining was performed using monoclonal mouse antibody (N1619, Dako, Denmark) for 1 hour according to Dako instruction. They were then rinsed in PBS and bound antibody was detected using EnVision polymer technology (K4081, DAKO) for 30 minutes. Staining was developed with 3-3 diaminobenzidine (DAB) for 5 minutes and then lightly counterstained with Mayer’s hematoxyline and mounted.

Tissue sections of the oral squamous cell carcinoma were considered as positive control. For negative control PBS was used instead of specific antibody. All slides were reviewed by two pathologists blindly. Assessing the expression of cyclin D1 in this study were classified as positive which showed nuclear staining in epithelial cells, whereas others were defined as negative. The positive cases were classified to additional categories, focal and diffuse expression (3). The slides were also evaluated for intensity of staining as mild, moderate and strong. Moreover, the epithelial layers predominantly containing the positive cells were noted in each group.

Statistical analysis
Analysis of the data was performed using Statistical Package for Social Sciences (SPSS software) (SPSS * Inc, Chicago, IL, USA) version 14.0. The Kruskal-Wallis test was used for ordinal variable. Fisher’s exact test was performed to compare cyclin D1 expression among groups. P<0.05 was regarded as statistically significant.

RESULTS
Table I shows that out of 68 selected cases, most of them were located in mandible (n=52). Mean age in OKCs, DCs, RCs and GOCs was 34, 30, 38 and 36 years respectively. The lesions were seen more in male (n=44).

Results of cyclin D1 immunostaining in selected odontogenic cysts are as follows:
Odontogenic keratocyst: As Table II shows, cyclin D1 expressed in 20 (87%) cases (Figure 1A, B). Immunoreactivity in most of the cases (n=16) was restricted to the parabasal layer with strong intensity (n=11) and focally pattern (n=12). Only one case showed positivity from parabasal to superficial layer.

Dentigerous cyst: In DCs, cyclin D1 was detected in 5(25%) cases (Figure 2) with focally pattern of staining. Positive cells similar to OKCs were limited more in parabasal layer but it was about ½ of those in OKCs. Staining intensity was mild to moderate (Table II).

Radicular cyst: Cyclin D1 was discernible in 6 (30%) cases of RCs (Figure 3) frequently in parabasal and superficial layer (4 of 6 cases). Two (33.3%) cases only showed immunostaining in superficial layer. Focal and diffuse pattern of staining were equally observed in positive RCs. Strong intensity was visible in 3(50%) cases (Table II).

Glandular odontogenic cyst: In few samples of GOCs, cyclin D1 positivity was 60% (3 of 5) with focally staining pattern in all cases. Strong intensity was evident in 2(66.7%) cases (Figure 4) with extension over the entire cystic epithelium (Table II).

The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p<0.001,Fisher’s exact test). Moreover, the difference in cyclin D1 expression between OKCs and RCs as well as OKCs and DCs was significant (p<0.001) but the difference was not observed between OKCs and GOCs (p=0.10), DCs with RCs (p=0.640), RCs with GOCs (p=0.243) and DCs with GOCs (p=0.283).

Table I: Demographic information of studied groups

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Mean age (SD)</th>
<th>Gender</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Odontogenic keratocyst</td>
<td>23</td>
<td>34 (3.25)</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Dentigerous cyst</td>
<td>20</td>
<td>30 (1.25)</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Radicular cyst</td>
<td>20</td>
<td>38 (2.5)</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Glandular odontogenic cyst</td>
<td>5</td>
<td>36 (4.25)</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table II: Distribution of expression, staining pattern, staining intensity and staining localization of cyclin D1 in odontogenic cysts

<table>
<thead>
<tr>
<th></th>
<th>OKC</th>
<th>DC</th>
<th>RC</th>
<th>GOC</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Expression pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.204</td>
</tr>
<tr>
<td>Focally</td>
<td>20 (87%)</td>
<td>5 (25%)</td>
<td>6 (30%)</td>
<td>3 (60%)</td>
<td></td>
</tr>
<tr>
<td>Diffuse</td>
<td>12 (52%)</td>
<td>5 (25%)</td>
<td>3 (15%)</td>
<td>3 (60%)</td>
<td></td>
</tr>
<tr>
<td>Staining intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.469</td>
</tr>
<tr>
<td>Mild</td>
<td>2 (10%)</td>
<td>1 (20%)</td>
<td>3 (50%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>7 (35%)</td>
<td>3 (60%)</td>
<td>3 (50%)</td>
<td>1 (33%)</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>11 (55%)</td>
<td>1 (20%)</td>
<td>0 (0%)</td>
<td>2 (66.7%)</td>
<td></td>
</tr>
<tr>
<td>Staining localization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Basal</td>
<td>1 (5%)</td>
<td>1 (20%)</td>
<td>1 (16.7%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Parabasal</td>
<td>16 (80%)</td>
<td>2 (40%)</td>
<td>0 (0%)</td>
<td>1 (33.3%)</td>
<td></td>
</tr>
<tr>
<td>Basal&parabasal</td>
<td>2 (10%)</td>
<td>1 (20%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Superficial</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (33.3%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Superficial&parabasal</td>
<td>1 (5%)</td>
<td>1 (20%)</td>
<td>2 (33.3%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>All layers</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (16.7%)</td>
<td>2 (66.7%)</td>
<td></td>
</tr>
</tbody>
</table>

P<0.05 is significant
(DC) dentigerous cyst, (RC) radicular cyst, (OKC) odontogenic keratocyst and (GOC) glandular odontogenic cyst.
As previously mentioned OKCs and DCs showed positive staining mainly in parabasal layer which was different from RCs and GOCs. Statistically significant difference was also observed in expression localization of cyclin D1 among four groups (p<0.01, Fisher’s exact test).

Assessment of staining pattern and staining intensity using Kruskal-Wallis test showed no significant difference in expression pattern (p=0.204) as well as staining intensity (p=0.469) across all groups.
OKCs not in sporadic ones (18). However, other studies showed higher expression of cyclin D1 in syndromic OKCs comparing to sporadic OKCs which can lead to disruption of cellular proliferation control system and more aggressive clinical behavior, but none of them reported the lack of cyclin D1 expression in sporadic OKC. The discrepancy between findings may be due to various laboratory methods and used antibody. In Lo Muzio’s study clone 5D4, diluted 1:800 was used while we used the clone DCS-6 and ready to use antibody.

Evaluation of staining pattern and intensity in current study showed no significant difference among groups. This result is in agreement with Juan-Carlos de-Vicente’s (3) report who examined cyclin D1 expression in OKCs in comparison with other lesions including ameloblastoma. It should be pointed out that our study contains many more cases than those of carlos – de – Vicente’s research.

In most OKCs and DCs, cyclin D1 was detected in parabasal layer and in consistent with previous research (3,13) seen more predominant in OKCs comparing DCs whereas in GOCs most of the cases showed expression over the cystic epithelium. These results may imply different proliferative activity in the epithelial layers in each group. Besides, it can justify the aggressive behavior of GOCs which is somehow similar to OKCs are only different in staining localization. Significant difference just in staining localization suggests the different proliferative compartment and growth pattern in these lesions but, since this is the first study related to cyclin D1 expression in GOCs, further studies using greater number of cases “particularly focusing on aggressive behavior and clinical findings” seems essential to get more insights on these issues.

It is noticeable that in one case of radicular cyst cyclin D1 expression was also seen in all layers of epithelial lining. Bando et al. showed that cytokines and growth factors released by inflammatory cells present in connective tissue can stimulate epithelial proliferation in RC and more intense inflammation may cause greater proliferative activity (19). Therefore, cyclin D1 expression in all layers may be related to the intensity of inflammation in cyst wall.

Other studies by evaluation of P53, P63, Ki-67, COX-2, IPO-38 and PCNA immunostaining in odontogenic cysts “to compare their proliferative activity” have also shown the higher expression of mentioned markers in parabasal layer of OKCs in contrast to DCs, RCs or normal mucosa seen in basal layer (18,19,20,21,22,23,24,25).

Taken together, regarding to all of the reports and studies in this field, it seems that OKC epithelium lining has a

DISCUSSION

Cyclin D1 is one of the Rb pathway proteins with oncogene properties which controls G1-S transition. Elevated levels of this protein might allow cells to escape from the cell cycle check point control and play an important role in tumorigenesis (13, 14, 15). Expression of cyclin D1 is detected in various types of malignant tumor whereas in normal tissue and benign tumors is negative or weakly expressed (13, 16, 17). To date, studies related to cyclin D1 expression in odontogenic cysts specially GOC are scarce and mainly have been focused on expression of other proliferation markers in OKC to compare with other cysts and odontogenic tumors as well as sporadic OKC with recurrent and syndromic ones (3,13).

In this study with respect to different clinical behavior and aggressiveness of odontogenic cysts, we employed immunohistochemical staining to evaluate cyclin D1 expression in epithelial lining of OKC, DC, RC and GOC to demonstrate differences in expression of this protein.

We observed a decreased staining positivity for cyclin D1 in the following order: OKCs (87%), GOCs (60%), RCs (30%), and DCs (25%). It was detected mostly in the parabasal layer of OKCs and DCs in contrast to what happens in RCs and GOCs. This is in line with Juan-Carlos de-Vicent, and Kenji Kimi’s studies (3,13). Kimi et al. investigated immunohistochemical expression of cyclin D1 and p16 in sporadic, recurrent and syndromic OKC. Similar to our study cyclin D1 was detected in parabasal layer of OKC with higher expression in syndromic OKC. Lo Muzio et al. compared cyclin D1 expression in sporadic OKCs and OKCs associated with Gorlin syndrome. On the contrary, they observed cyclin D1 expression just in syndromic OKCs not in sporadic ones (18). However, other studies showed higher expression of cyclin D1 in syndromic OKCs comparing to sporadic OKCs which can lead to disruption of cellular proliferation control system and more aggressive clinical behavior, but none of them reported the lack of cyclin D1 expression in sporadic OKC. The discrepancy between findings may be due to various laboratory methods and used antibody. In Lo Muzio’s study clone 5D4, diluted 1:800 was used while we used the clone DCS-6 and ready to use antibody.

Evaluation of staining pattern and intensity in current study showed no significant difference among groups. This result is in agreement with Juan-Carlos de-Vicente’s (3) report who examined cyclin D1 expression in OKCs in comparison with other lesions including ameloblastoma. It should be pointed out that our study contains many more cases than those of carlos – de – Vicente’s research.

In most OKCs and DCs, cyclin D1 was detected in parabasal layer and in consistent with previous research (3,13) seen more predominant in OKCs comparing DCs whereas in GOCs most of the cases showed expression over the cystic epithelium. These results may imply different proliferative activity in the epithelial layers in each group. Besides, it can justify the aggressive behavior of GOCs which is somehow similar to OKCs are only different in staining localization. Significant difference just in staining localization suggests the different proliferative compartment and growth pattern in these lesions but, since this is the first study related to cyclin D1 expression in GOCs, further studies using greater number of cases “particularly focusing on aggressive behavior and clinical findings” seems essential to get more insights on these issues.

It is noticeable that in one case of radicular cyst cyclin D1 expression was also seen in all layers of epithelial lining. Bando et al. showed that cytokines and growth factors released by inflammatory cells present in connective tissue can stimulate epithelial proliferation in RC and more intense inflammation may cause greater proliferative activity (19). Therefore, cyclin D1 expression in all layers may be related to the intensity of inflammation in cyst wall.

Other studies by evaluation of P53, P63, Ki-67, COX-2, IPO-38 and PCNA immunostaining in odontogenic cysts “to compare their proliferative activity” have also shown the higher expression of mentioned markers in parabasal layer of OKCs in contrast to DCs, RCs or normal mucosa seen in basal layer (18,19,20,21,22,23,24,25).

Taken together, regarding to all of the reports and studies in this field, it seems that OKC epithelium lining has a
parabasal proliferation compartment and some intrinsic growth potential which are not seen in dentigerous and radicular cyst and different from GOC. Here we should point out that thus far the emphasis in research have been concentrated on the epithelium itself, only occasional passing reference to underlying connective tissue stroma like assessment of extracellular matrix components (24) and needs more investigation.

In conclusion, the results showed that cyclin D1 expression was higher in OKCs and GOCs respectively comparing to DCs and RCs. Immunostaining was present in parabasal layer in most cases of OKCs whereas in GOCs positive cells was seen in all layers. These findings could help us to explain the differences in the clinical behavior of OKCs and GOCs, pointing to different proliferative compartment and an abnormal control cell cycle leading to an intrinsic growth potential.

ACKNOWLEDGMENTS

This work was excerpted from dissertation NO 2983, Dental Faculty, Beheshti University of Medical Sciences, Tehran, Iran. This work has been supported financially by research center of shahid Beheshti dental faculty.

REFERENCES

