Dear Editor,

Various studies on the Human Papilloma Virus (HPV) types seen in our country have been conducted previously but they have been inadequate due to the insufficient number of patients as well as not representing a wide geographical area. Recently Dursun P. et al. conducted a multi-centered study on a large series of 6388 cases related to this issue and determined HPV positivity in 25% of the cases. In addition, this study investigated the incidence of HPV in patients with abnormal and normal cytology and the relationship between abnormal cytological findings and HPV types (1). HPV is known to play a role in precancerous and invasive lesions of the cervix and the incidence of these lesions is gradually increasing (2-6). We conducted an HPV subtype study in our region by investigating the presence of cervical precancerous lesions in cases examined for high-risk HPV DNA with the PCR method in the cervicovaginal cytology materials and found to be positive.

A total of 1137 patients whose cervicovaginal cytology specimens were obtained during routine gynecological examination at the Antalya Education and Research Hospital during 2012 and 2013 were retrospectively included in our study and the high-risk HPV DNA test was performed with the PCR method. Of the patients for which PCR was performed on the sample, the cervicovaginal cytology specimens of those found to have high-risk HPV DNA were stained with the Papanicolau stain, evaluated with the microscope and investigated in terms of cervical precancerous lesions (ASCUS, SIL). We also determined the high-risk HPV subtype in cases found to have HPV and investigated the incidence.

The age range of the 1137 patients included in our study was 20-66 years. HPV DNA was detected in 36 cervicovaginal cytology materials and not found in 1101 patients where the presence of high-risk HPV DNA was investigated with PCR. When these 36 cases were evaluated in terms of precancerous lesions, 11 were found to have ASCUS, 20 L-SIL, 3 H-SIL and 2 reactive changes. HPV DNA positivity was 3.2% in cases studied with PCR, and ASCUS was found in 30.6%, L-SIL in 55.6%, H-SIL in 8.3% and reactive changes in 5.5%. In total, 94.5% of the cases who were HPV DNA positive were observed to have a cervical precancerous lesion while 5.5% showed no precancerous lesion. High-risk HPV subtyping revealed that HPV type 16 was the most frequently observed type in all cases and 56, 51, 31, 59, 35, 52, 58, 18, 45, 39 and 33 were identified at decreasing rates. Accordingly, HPV types 16 and 56 were most common and type 33 least common among the cases. The most common types in the ASCUS group was 16 and 51 while type 16 was noted in all 3 cases with H-SIL (Table I).

In general, no cervical cancer was observed in cases diagnosed with ASCUS or L-SIL with cytology although HPV DNA was positive in most L-SIL cases (2,7). However, HPV DNA type determination in cases with abnormal cervical cytology is a predictive factor in terms of the presence of a high-grade cervical intraepithelial lesion (2). Studies on the incidence of HPV types have led to varied results. For example, types 16, 6 (8) and types 6, 11 (9) were most commonly seen in two studies conducted in our country while types 16, 6 were the most commonly seen types in the study of Dursun P et al., the most recent study on this subject (1). Studies from other countries have reported 16, 31 (10) 52, 16 (6) as the most common types. The relationship between intraepithelial lesions and HPV types has also been investigated, although the numbers are small. One study reported a significant correlation between abnormal cytological findings and type 16 (2). This finding is in consistent with the results of Dursun P et al (1). Similarly, type 16 was common in our study and the most common types were 16 and 51 in the ASCUS group, 16 and 56 in the L-SIL group while type 16 was seen in all 3 H-SIL cases. Type 16 was therefore seen in all three groups. The most common high-risk HPV types in the LSIL group, the largest group in our study, were types 16 and 56. It is interesting that only type 16 was seen in the H5IL group and Chiang YC et al. (11) have also reported a relationship between HSIL and types 16, 18. Various immunization methods are now present to prevent HPV infections and vaccines have...
been shown to be particularly effective against HPV 16, 18 and 6, 11 strains. HPV type distribution varies according to the geographical region and it is important to know the variations regarding the efficacy of vaccination.

Betül Ünal
Department of Pathology, Antalya Education and Research Hospital, ANTALYA, TURKEY
E-mail: betulunalmd@gmail.com

Cem Sezer
Department of Pathology, Antalya Education and Research Hospital, ANTALYA, TURKEY

REFERENCES


<table>
<thead>
<tr>
<th>Diagnosis/HPV type</th>
<th>16</th>
<th>18</th>
<th>31</th>
<th>33</th>
<th>35</th>
<th>39</th>
<th>45</th>
<th>51</th>
<th>52</th>
<th>56</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCUS</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>LSIL</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>HSIL</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Reactive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

ASCUS: Atypical Squamous Cells of Undetermined Significance.
LSIL: Low Grade Squamous Intraepithelial Lesion.
HSIL: High Grade Squamous Intraepithelial Lesion.